Расчет тепловой нагрузки на отопление и смежных величин
Как вычисляется расчетная тепловая нагрузка на отопление? Какие факторы влияют на потребность дома в тепловой энергии? Каким образом подобрать отопительные приборы оптимальной мощности? В статье мы постараемся ответить на эти и некоторые другие вопросы.
Проще, еще проще
Сразу оговорим один нюанс: эта статья ориентирована на владельцев частных домов и квартир с автономным отоплением. Методики расчетов систем отопления многоквартирных зданий довольно сложны и должны учитывать массу факторов: работу вентиляции, розу ветров, степень инсоляции здания и многое другое.
В случае же, когда речь идет об отоплении одного небольшого дома, тепловую мощность проще подобрать с определенным запасом. Цена нескольких дополнительных секций батареи едва ли покажется разорительной на фоне общей стоимости строительства.
Эксплуатационные расходы же при должной организации не увеличатся вовсе: термостаты и дроссели ограничат тепловую мощность в теплые дни, когда она не будет востребованной.
Итак: наша цель — научиться выполнять расчет нагрузки на отопление максимально простыми и понятными неспециалисту способами.
Что считаем
Нам предстоит научиться рассчитывать:
- Общую тепловую мощность (суммарную мощность отопительных приборов, а в случае автономной системы — еще и мощность котла).
- Мощность отдельного отопительного прибора в отдельно взятом помещении.
Кроме того, мы затронем несколько смежных величин:
- Расчет количества теплоносителя и объема расширительного бака системы отопления.
- Подбор производительности циркуляционного насоса.
- Выбор оптимального диаметра розлива.
Общая тепловая мощность
По площади
СНиПы полувековой давности предлагают простейшую схему расчета, которой многие пользуются по сей день: на 1 квадратный метр площади отапливаемого помещения берется 100 ватт тепла. На дом площадью 100 квадратов нужно 10 КВт. Точка.
Просто, понятно и… слишком неточно.
Причины?
- СНиПы разрабатывались для многоквартирных домов. Утечки тепла в квартире, окруженной отапливаемыми помещениями, и в частном доме с ледяным воздухом за стенами несопоставимы.
- Расчет верен для квартир с высотой потолка 2,5 метра. Более высокий потолок увеличит объем помещения, а, стало быть, и затраты тепла.
- Через окна и двери теряется куда больше тепловой энергии, чем через стены.
- Наконец, будет логичным предположить, что потери тепла в Сочи и Якутске будут сильно различаться. Увеличение дельты температур между помещением и улицей в два раза увеличит затраты тепла на отопление ровно вдвое. Физика, однако.
По объему
Для помещений с нормированным тепловым сопротивлением ограждающих конструкций (для Москвы — 3,19 м2*С/Вт) можно использовать расчет тепловой мощности по объему помещения.
- На кубометр отапливаемого объема квартиры берется 40 ватт тепла. На кубометр объема частного дома без общих стен с соседними отапливаемыми строениями — 60.
- На каждое окно к базовому значению добавляется 100 ватт тепловой энергии. На каждую ведущую на улицу дверь — 200.
- Полученная мощность умножается на региональный коэффициент:
Регион | Коэффициент |
Краснодар, Крым | 0,7-0,9 |
Ленинградская и Московская области | 1,2-1,3 |
Сибирь, Дальний Восток | 1,5-1,6 |
Чукотка, Якутия | 2,0 |
Давайте еще раз рассчитаем потребность в тепловой мощности отопления для дома площадью 100 квадратов, однако теперь конкретизируем задачу:
Параметр | Значение |
Высота потолков | 3,2 м |
Количество окон | 8 |
Количество ведущих на улицу дверей | 2 |
Расположение | Г. Тында (средняя температура января — -28С) |
- Высота потолков в 3,2 метра даст нам внутренний объем дома в 3,2*100=320 м3.
- Базовая тепловая мощность составит 320*60=19200 ватт.
- Окна и двери внесут свою лепту: 19200+(100*8)+(200*2)=20400 ватт.
- Бодрящий холод января заставит нас использовать климатический коэффициент 1,7. 20400*1,7=34640 ватт.
Как нетрудно заметить, разница с расчетом по первой схеме не просто велика — она разительна.
Что делать, если качество утепления дома существенно лучше или хуже, чем предписывает СНиП «Тепловая защита зданий»?
По объему и коэффициенту утепления
Инструкция для этой ситуации сводится к использования формулы вида Q=V*Dt*K/860, в которой:
- Q — заветный показатель тепловой мощности в киловаттах.
- V — Объем отапливаемого помещения.
- Dt -дельта температур между помещением и улицей в пик холодов.
- K — коэффициент, зависящий от степени утепления здания.
Две переменных требуют отдельных комментариев.
Дельта температур берется между предписанной СНиП температурой жилого помещения (+18 для регионов с нижней границей зимних холодов до -31С и +20 — для зон с более сильными морозами) и средним минимумом наиболее холодного месяца. Ориентироваться на абсолютный минимум не стоит: рекордные холода редки и, простите за невольный каламбур, погоды не делают.
Коэффициент утепления можно вывести аппроксимацией данных из следующей таблицы:
Коэффициент утепления | Ограждающие конструкции |
0,6 — 0,9 | Пенопластовая или минераловатная шуба, утепленная кровля, энергосберегающие тройные стеклопакеты |
1,-1,9 | Кладка в полтора кирпича, однокамерные стеклопакеты |
2 — 2,9 | Кладка в кирпич, окна в деревянных рамах без утепления |
3-4 | Кладка в полкирпича, остекление в одну нитку |
Давайте еще раз выполним расчет тепловых нагрузок на отопление для нашего дома в Тынде, уточнив, что он утеплен пенопластовой шубой толщиной 150 мм и защищен от непогоды окнами с тройными стеклопакетами.
Собственно, иначе современные дома в условиях Крайнего Севера не строятся.
- Температуру внутри дома примем равной +20 С.
- Средний минимум января услужливо подскажет общеизвестная интернет-энциклопедия. Он равен -33С.
- Таким образом, Dt=53 градуса.
- Коэффициент утепления возьмем равным 0,7: описанное нами утепление близко к верхней границе эффективности.
Q=320*53*0,7/860=13,8 КВт. Именно на это значение и стоит ориентироваться при выборе котла.
Подбор мощности отопительного прибора
Как вычислить тепловую нагрузку на участок контура, соответствующий отдельно взятому помещению?
Проще простого: выполнив расчет по одной из приведенных выше схем, но уже для объема комнаты. Скажем, на комнату площадью 10 м2 будет приходиться ровно 1/10 общей тепловой мощности; согласно расчету по последней схеме она равна 1380 ватт.
Как подобрать отопительный прибор с нужными характеристиками?
В общем случае — просто-напросто изучив документацию на присмотренный вами радиатор или конвектор. Производители обычно указывают значение теплового потока для отдельной секции или всего прибора.
Нюанс: тепловой поток обычно указывается для 70-градусной дельты температур между теплоносителем и воздухом в комнате.
Уменьшение этой дельты вдвое повлечет за собой двукратное падение мощности.
Если в силу каких-то причин документация и сайт производителя недоступны, можно ориентироваться на следующие средние значения:
Тип секционного радиатора | Тепловой поток на одну секцию, ватты |
Чугунный | 140-160 |
Биметаллический (сталь и алюминий) | 180 |
Алюминиевый | 200 |
Отдельно стоит оговорить расчет теплоотдачи регистра.
Для горизонтальной трубы круглого сечения она рассчитывается по формуле Q=Pi*Dн*L*k*Dt, в которой:
- Q — тепловая мощность в ваттах;
- Pi — число «пи», принимаемое равным 3,1415;
- Dн — наружный диаметр секции регистра в метрах.
- L — длина трубы в метрах.
- k — коэффициент теплопроводности, который для стальной трубы берется равным 11,63 Вт/м2*С;
- Dt — дельта температур между теплоносителем и воздухом в комнате.
Типичный регистр состоит из нескольких секций. При этом все они, кроме первой, находятся в восходящем потоке теплого воздуха, что уменьшает параметр Dt и прямо влияет на теплоотдачу. Именно поэтому для второй и прочих секций используется дополнительный коэффициент 0,9.
Сопроводим примером и этот расчет.
Давайте вычислим тепловую мощность четырехсекционного регистра длиной три метра, выполненного из трубы с наружным диаметром 208 мм, при температуре теплоносителя 70 градусов и температуре воздуха в комнате 20 градусов.
- Мощность первой секции составит 3,1415*0,208*3*11,63*50=1140 ватт (с округлением до целого числа).
- Мощность второй и прочих секций равна 1140*0,9=1026 ватт.
- Полная тепловая мощность регистра — 1140+(1026*3)=4218 ватт.
Объем расширительного бака
Это один из параметров, нуждающихся в расчете в автономной отопительной системе. Расширительный бак должен вместить избыток теплоносителя при его температурном расширении. Цена его недостаточного объема — постоянное срабатывание предохранительного клапана.
Однако: завышенный объем бачка никаких негативных последствий не имеет.
В простейшем варианте расчета бак берется равным 10% общего количества теплоносителя в контуре. Как узнать количество теплоносителя?
Вот пара простых решений:
- Система заполняется водой, после чего та сливается в любую мерную посуду.
- Кроме того, в сбалансированной системе объем теплоносителя в литрах примерно равен 13-кратной мощности котла в киловаттах.
Более сложная (но и дающая более точный результат) формула расчета бачка выглядит так:
V = (Vt х E)/D.
В ней:
- V — искомый объем бака в литрах.
- Vt — объем теплоносителя в литрах.
- Е — коэффициент расширения теплоносителя при максимальной рабочей температуре контура.
- D — коэффициент эффективности бака.
И в этом случае пара параметров нуждается в комментариях.
Коэффициент расширения воды, которая чаще всего выступает в качестве теплоносителя, при нагреве с исходной температуры в +10С можно взять из следующей таблицы:
Нагрев, С | Расширение, % |
30 | 0,75 |
40 | 1,18 |
50 | 1,68 |
60 | 2,25 |
70 | 2,89 |
80 | 3,58 |
90 | 4,34 |
100 | 5,16 |
Полезно: водно-гликолевые смеси, использующиеся в качестве антифризов для отопительных контуров, расширяются при нагреве несколько сильнее.
Разница достигает 0,45% при нагреве на 100 градусов 30-процентного раствора гликоля.
Коэффициент эффективности расширительного бачка вычисляется по следующей формуле: D = (Pv — Ps) / (Pv + 1).
В ней:
- Pv — максимально допустимое рабочее давление в контуре. На него выставляется срабатывание предохранительного клапана. Как правило, оно выбирается равным 2,5 атмосферы.
- Ps — давление зарядки бака. Оно обычно соответствует высоте водяного столба в контуре над баком. Скажем, в системе отопления, где верх радиаторов на втором этаже возвышается над баком, смонтированным в подвале, на 5 метров, бак заряжается давлением в 0,5 атмосферы (что соответствует пятиметровому напору).
Давайте в качестве примера выполним своими руками расчет бачка для следующих условий:
- Объем теплоносителя в контуре равен 400 литрам.
- Теплоноситель — вода, нагреваемая котлом с 10 до 70 градусов.
- Предохранительный клапан выставлен на 2,5 кгс/см2.
- Расширительный бак накачан воздухом до давления в 0,5 кгс/см2.
Итак:
- Коэффициент эффективности бака равен (2,5-0,5)/(2,5+1)=0,57.
- Коэффициент расширения воды при нагреве на 60 градусов равен 2,25%, или 0,0225.
- Бак должен иметь минимальный объем в 400*0,0225/0,57=16 (с округлением до ближайшего значения из линейки размеров бачков) литров.
Насос
Как подобрать оптимальный напор и производительность насоса?
С напором все просто. Минимального его значения в 2 метра (0,2 кгс/см2) достаточно для контура любой разумной протяженности.
Справка: система отопления многоквартирного дома функционирует при перепаде между смесью и обраткой именно в два метра.
Производительность может быть рассчитана по простейшей схеме: весь объем контура должен оборачиваться трижды за час. Так, для приведенного нами выше количества теплоносителя в 400 литров разумный минимум производительности циркуляционного насоса отопительной системы при рабочем напоре должен быть равен 0,4*3=1,2 м3/час.
Для отдельных участков контура, снабжающихся собственным насосом, его производительность может быть рассчитана по формуле G=Q/(1,163*Dt).
В ней:
- G — заветное значение производительности в кубометрах в час.
- Q — тепловая мощность участка системы отопления в киловаттах.
- 1,163 — константа, средняя теплоемкость воды.
- Dt — разница температур между подающим и обратным трубопроводами в градусах по шкале Цельсия.
Подсказка: в автономных системах она обычно берется равной 20 градусам.
Так, для контура с тепловой мощностью в 5 киловатт при 20-градусной дельте между подачей и обраткой нужен насос с производительностью не менее 5/(1,163*20)=0,214 м3/час.
Диаметр труб
Как подобрать оптимальный диаметр розлива в контуре с известной тепловой мощностью?
Здесь поможет формула D=354*(0,86*Q/Dt)/v.
В ней:
- D — внутренний диаметр трубы в сантиметрах.
- Q — тепловая мощность контура в киловаттах.
- Dt — дельта температур между подачей и обратным трубопроводом. Напомним, что типичное значение Dt для автономной отопительной системы — 20 С.
- v — скорость потока. Диапазон ее значений — от 0,6 до 1,5 м/с. При более низкой скорости растет разница температур между первыми и последними радиаторами в контуре; при более высокой — становятся заметными гидравлические шумы.
Давайте вычислим минимальный диаметр для пресловутого контура мощностью 5 КВт при скорости воды в трубах, равной 1 м/с.
D=354*(0,86*5/20)/1=4,04 мм. С практической стороны это означает, что можно брать трубы минимально доступного размера и не бояться медленной циркуляции в них.
Заключение
Надеемся, что обилие формул и сухих цифр не утомило уважаемого читателя. Как обычно, прикрепленное видео предложит его вниманию дополнительную тематическую информацию. Успехов!
Оставить комментарий
Оставляя комментарий, Вы принимаете пользовательское соглашение